less than 1 minute read

알고리즘 디자인의 과정(솔루션을 도출하는 과정)

  1. 자연어로 기술된 문제를 접한다.
  2. CS를 활용하여 적절하게 모델링한다.
  3. CS 알고리즘 사고를 통하여 솔루션을 디자인한다.

1. Problem: described in natural language

2. MODEL: clear, easy to understand, communicate

→ mathematical expressions
→ graph model
→ probability/stat model(네트워크 전공 연구원)
→ linear algebra model(인공지능)
→ convex optimization model(최적화, 2차함수, 수치해석)
→ graph model in various applications
shortest path, network information flow analysis, social network services(SNSs), state diagram…
→ step-by-step procedure(순서도, flow charts)

모든 문제를 graph로 표현/모델링하고 답을 찾는다.

Graph Theory!!


Following content is a personal lecture note taken in Mathematics for CS in MIT


Graph Theory and Coloring

Graph Coloring Problem: given a graph G and K colors, assign a color to each node so adjacent nodes get different colors.

Def: The minimum value of k for which such a coloring exists is the __Chromatic Number(Kai) of G

Basic Coloring Alg for G=(V,E)

  1. order the nodes v1, v2, … vn
  2. order the colors c1, c2, …
  3. for i=1, 2, … n Assign the lowest legal color to v

Theorem: If every node in G has degree ≤ d, the Basic Alg uses at most d+1 colors for G.